Biomimetic Synthesis of CuO Nanoparticle using Capparis decidua and their Antibacterial Activity

Authors

  • Trupti Pagar Department of Chemistry, G.M.D. Arts, B.W. Commerce and Science College, Sinnar, 422 103, Savitribai Phule Pune University, Maharashtra, India
  • Suresh Ghotekar Department of Chemistry, Sanjivani Arts, Commerce and Science College, Kopargaon 423 603, Savitribai Phule Pune University, Maharashtra, India
  • Shreyas Pansambal Department of Chemistry, Shri Saibaba College Shirdi 423 109, Savitribai Phule Pune University, Maharashtra, India
  • Khanderao Pagar Department of Chemistry, S.S.R. College of Arts, Commerce and Science College, Silvassa 396 230, Savitribai Phule Pune University, Dadra and Nagar Haveli, India
  • Rajeshwari Oza Department of Chemistry, S.N. Arts, D.J.M. Commerce and B.N.S. Science College, Sangamner 422 605, Savitribai Phule Pune University, Maharashtra, India

DOI:

https://doi.org/10.22034/AJSE2014133

Keywords:

Nanotechnology, CuO, Nanoparticle, Capparis decidua, Antibacterial activity, Green synthesis

Abstract

In this study, a simple approach for the biomimetic synthesis of copper oxide nanoparticle (CuO NP) using Capparis decidua bark extract (CDBE) was investigated. The biogenic synthesis of CuO NP was explored by XRD, SEM, EDX and TEM studies. XRD data shows the formation of monoclinic crystalline structures of CDBE mediated CuO NP. SEM images show that the NPs have quasi-spherical shape and the mean diameter were found to be 5-40 nm. These perceptions were affirmed by HRTEM analysis. CDBE mediated CuO NP shows significant bactericidal performance against three pathogenic bacteria such as Bacillus subtilis, Staphylococcus aureus and Escherichia coli. The study reveals a straightforward, eco-benign and vigorous approach for the biomimetic production of CuO NP using therapeutic plants.

Downloads

Download data is not yet available.

References

Gawande MB, Goswami A, Felpin FX, Asefa T, Huang X, Silva R, Zou X, Zboril R, Varma RS. Cu and Cu-based nanoparticles: synthesis and applications in catalysis. Chem. Rev. 2016;116:3722-3811.

Matussin S, Harunsani MH, Tan AL, Khan MM. Plant-extract-mediated SnO2 nanoparticles: Synthesis and applications. ACS Sustain. Chem. Eng. 2020;8:3040-3054.

Ghotekar S. A review on plant extract mediated biogenic synthesis of CdO nanoparticles and their recent applications. Asian J. Green Chem. 2019;3:187-200.

Pansambal S, Ghotekar S, Shewale S, Deshmukh K, Barde N, Bardapurkar P. Efficient synthesis of magnetically separable CoFe2O4@SiO2 nanoparticles and its potent catalytic applications for the synthesis of 5-aryl-1,2,4-triazolidine-3-thione derivatives. J. Water Environ. Nanotechnol. 2019;4:174-186.

Tarannum N, Gautam YK. Facile green synthesis and applications of silver nanoparticles: a state-of-the-art review. RSC Adv. 2019;9:34926-34948.

Pagar T, Ghotekar S, Pagar K, Pansambal S, Oza R. A review on bio-synthesized Co3O4 nanoparticles using plant extracts and their diverse applications. J. Chem. Rev. 2019;1:260-270.

Nikam A, Pagar T, Ghotekar S, Pagar K, Pansambal S. A review on plant extract mediated green synthesis of zirconia nanoparticles and their miscellaneous applications. J. Chem. Rev. 2019;1:154-163.

Ghotekar S, Pansambal S, Pagar K, Pardeshi O, Oza R. Synthesis of CeVO4 nanoparticles using sol-gel auto combustion method and their antifungal activity. Nanochem. Res. 2018;3:189-196.

Ghotekar S. Plant extract mediated biosynthesis of Al2O3 nanoparticles-a review on plant parts involved, characterization and applications. Nanochem. Res. 2019;4:163-169.

Oza G, Reyes-Calderón A, Mewada A, Arriaga LG, Cabrera GB, Luna DE, Iqbal HM, Sharon M, Sharma A. Plant-based metal and metal alloy nanoparticle synthesis: a comprehensive mechanistic approach. J. Mater. Sci. 2020; in press.

Ghotekar S, Pansambal S, Pawar SP, Pagar T, Oza R, Bangale S. Biological activities of biogenically synthesized fluorescent silver nanoparticles using Acanthospermum hispidum leaves extract. SN Appl. Sci. 2019;1:1342.

Korde P, Ghotekar S, Pagar T, Pansambal S, Oza R, Mane D. Plant extract assisted eco-benevolent synthesis of selenium nanoparticles - a review on plant parts involved, characterization and their recent applications. J. Chem. Rev. 2020;2:157-168.

Ghotekar S, Pagar K, Pansambal S, Murthy HCA, Oza R. A review on eco-friendly synthesis of BiVO4 nanoparticle and its eclectic applications. Adv. J. Sci. Eng. 2020;1:106-112.

Kamble DR, Bangale SV, Ghotekar SK, Bamane SR. Efficient synthesis of CeVO4 nanoparticles using combustion route and their antibacterial activity. J. Nanostruct. 2018;8:144-151.

Ishak NM, Kamarudin SK, Timmiati SN. Green synthesis of metal and metal oxide nanoparticles via plant extracts: an overview. Mater. Res. Exp. 2019;6:112004.

Savale A, Ghotekar S, Pansambal S, Pardeshi O. Green synthesis of fluorescent CdO nanoparticles using Leucaena leucocephala L. extract and their biological activities. J. Bacteriol. Mycol. 2017;5:00148.

Syedmoradi Dabhane H, Ghotekar S, Tambade P, Medhane V. Plant mediated green synthesis of lanthanum oxide (La2O3) nanoparticles: A review. Asian J. Nanosci. Mater. 2020;3:291-299.

Ghotekar S, Pagar T, Pansambal S, Oza R. A Review on green synthesis of sulfur nanoparticles via plant extract, characterization and its applications. Adv. J. Chem. B 2020; 2:128-143.

Ghotekar S, Savale A, Pansambal S. Phytofabrication of fluorescent silver nanoparticles from Leucaena leucocephala L. leaves and their biological activities. J. Water Environ. Nanotechnol. 2018;3:95-105.

Murthy HA, Abebe B, Prakash CH, Shantaveerayya K. A review on green synthesis of Cu and CuO nanomaterials for multifunctional applications. Mater. Sci. Res. India. 2018;15:279-295.

Pagar T, Ghotekar S, Pansambal S, Oza R, Marasini BP. Facile plant extract mediated eco-benevolent synthesis and recent applications of CaO-NPs: A state-of-the-art review. J. Chem. Rev. 2020;2:201-210.

Murthy HC, Desalegn T, Kassa M, Abebe B, Assefa T. Synthesis of green copper nanoparticles using medicinal plant hagenia abyssinica (Brace) JF. Gmel. leaf extract: Antimicrobial properties. J. Nanomater. 2020;2020: 3924081.

Ghotekar S, Dabhane H, Pansambal S, Oza R, Tambade P, Medhane V. A Review on biomimetic synthesis of Ag2O nanoparticles using plant extract, characterization and its recent applications. Adv. J. Chem. B 2020;2:102-111.

Bangale S, Ghotekar S. Bio-fabrication of Silver nanoparticles using Rosa Chinensis L. extract for antibacterial activities. Int. J. Nano Dimens. 2019;10:217-224.

Rajeshkumar S, Naik P. Synthesis and biomedical applications of cerium oxide nanoparticles–a review. Biotechnol. Rep. 2018;17:1-5.

Pansambal S, Deshmukh K, Savale A, Ghotekar S, Pardeshi O, Jain G, Aher Y, Pore D. Phytosynthesis and biological activities of fluorescent CuO nanoparticles using Acanthospermum hispidum L. extract. J. Nanostruct. 2017;7:165-174.

Chowdhury R, Khan A, Rashid MH. Green synthesis of CuO nanoparticles using Lantana camara flower extract and their potential catalytic activity towards the aza-Michael reaction. RSC Adv. 2020;10:14374-14385.

Pagar K, Ghotekar S, Pagar T, Nikam A, Pansambal S, Oza R, Sanap D, Dabhane H. Antifungal activity of biosynthesized CuO nanoparticles using leaves extract of Moringa oleifera and their structural characterizations. Asian J. Nanosci. Mater. 2020;3:15-23.

Velsankar K, Vinothini V, Sudhahar S, Kumar MK, Mohandoss S. Green synthesis of CuO nanoparticles via Plectranthus amboinicus leaves extract with its characterization on structural, morphological, and biological properties. Appl. Nanosci. 2020;10:3953-3971.

Aher YB, Jain GH, Patil GE, Savale AR, Ghotekar SK, Pore DM, Pansambal SS, Deshmukh KK. Biosynthesis of copper oxide nanoparticles using leaves extract of Leucaena leucocephala L. and their promising upshot against diverse pathogens. Int. J. Mol. Clin. Microbiol. 2017;7:776-786.

Rafique M, Shafiq F, Gillani SS, Shakil M, Tahir MB, Sadaf I. Eco-friendly green and biosynthesis of copper oxide nanoparticles using Citrofortunella microcarpa leaves extract for efficient photocatalytic degradation of Rhodamin B dye form textile wastewater. Optik 2020;208:164053.

Alinezhad H, Pakzad K. Green synthesis of copper oxide nanoparticles with an extract of Euphorbia maculata and their use in the Biginelli Reaction. Org. Prep. Proc. Int. 2020;52:319-327.

Pansambal S, Gavande S, Ghotekar S, Oza R, Deshmukh K. Green synthesis of CuO nanoparticles using Ziziphus mauritiana L. extract and its characterizations. Int. J. Sci. Res. Sci. Tech. 2017;3:1388-1392.

Pansambal S, Ghotekar S, Oza R, Deshmukh K. Biosynthesis of CuO nanoparticles using aqueous extract of Ziziphus mauritiana L. leaves and their catalytic performance for the 5-aryl-1, 2, 4-triazolidine-3-thione derivatives synthesis. Int. J. Sci. Res. Sci. Tech. 2019;5:122-128.

Sackey J, Nwanya A, Bashir AK, Matinise N, Ngilirabanga JB, Ameh AE, Coetsee E, Maaza M. Electrochemical properties of Euphorbia pulcherrima mediated copper oxide nanoparticles. Mater. Chem. Phys. 2020;244:122714.

Stoimenov PK, Klinger RL, Marchin GL, Klabunde KJ. Metal oxide nanoparticles as bactericidal agents. Langmuir 2002;18:6679-6686.

Rehana D, Mahendiran D, Kumar RS, Rahiman AK. Evaluation of antioxidant and anticancer activity of copper oxide nanoparticles synthesized using medicinally important plant extracts. Biomed. Pharm. 2017;89:1067-1077.

Yu Y, Zhang J. Solution-phase synthesis of rose-like CuO. Mater. Lett. 2009;63:1840-1843.

Rahnama A, Gharagozlou M. Preparation and properties of semiconductor CuO nanoparticles via a simple precipitation method at different reaction temperatures. Opt. Quant. Elec. 2012;44:313-322.

Nakate UT, Lee GH, Ahmad R, Patil P, Hahn YB, Yu YT, Suh EK. Nano-bitter gourd like structured CuO for enhanced hydrogen gas sensor application. Int. J. Hyd. Energy 2018;43:22705-22714.

Safarifard V, Morsali A. Sonochemical syntheses of a nano-sized copper (II) supramolecule as a precursor for the synthesis of copper (II) oxide nanoparticles. Ultrason. Sonochem. 2012;19:823-829.

Battez AH, González R, Viesca JL, Fernández JE, Fernández JD, Machado A, Chou R, Riba J. CuO, ZrO2 and ZnO nanoparticles as antiwear additive in oil lubricants. Wear 2008;265:422-428.

Yu T, Cheong FC, Sow CH. The manipulation and assembly of CuO nanorods with line optical tweezers. Nanotechnol. 2004;15:1732.

Nasrollahzadeh M, Sajadi SM, Maham M. Tamarix gallica leaf extract mediated novel route for green synthesis of CuO nanoparticles and their application for N-arylation of nitrogen-containing heterocycles under ligand-free conditions. RSC Adv. 2015;5:40628-40635.

Rathee S, Rathee P, Rathee D, Rathee D, Kumar V. Phytochemical and pharmacological potential of kair (Capparis decidua). Int. J. Phytomed. 2010;2:10-17.

Rattan A. Antimicrobials in laboratory medicine. Churchill BI, Livingstone, New Delhi. 2000.

Cullity B.D. Elements of X-ray Diffraction, second ed. Addison-Wesley, Massachusetts. 1978.

Published

2020-11-11

How to Cite

Pagar, T., S. Ghotekar, S. Pansambal, K. Pagar, and R. Oza. “Biomimetic Synthesis of CuO Nanoparticle Using Capparis Decidua and Their Antibacterial Activity”. Advanced Journal of Science and Engineering, vol. 1, no. 4, Nov. 2020, pp. 133-7, doi:10.22034/AJSE2014133.

Issue

Section

Original Research Article